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\ ABSTRACT

The concept of chain coding for map data based on the well-known 8-
direction coding matrix is generalized to coding schemes involving 16,
24, 32, 48 and even more permissible directions for the line segment
1inks in the chain representation. General methods for quantization
and encoding are described. The different schemes are compared with re-
spect to compactness, precision, smoothness, simplicity of encoding, and
facility for processing. The resulting coding schemes appear to have
desirable characteristics for map data processing applications because

of their improved storage efficiency, smoothness, and reduced processing
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1. INTRODUCTION

In the chain coding scheme for the computer representation of line-
drawing data, an overlaid square lattice is assumed and the lines of
the drawing are represented by sequences of straight-line segments
connecting nodes of the lattice lying closest to the lines. In pass-
ing from one node to the next, there are 8 allowed directions, arnd
the concatenated line segments are all of length 1 or Y2 (times the
lattice spacing). The scheme has been found especially useful for
representing free-form line drawing-data as 1s encountered in
geographic maps. It has found wide acceptance for the purpose of
digital data transmission and computer processing, mainly because
of its inherent simplicity and the ease with which efficient pro-
cessing algoritims can be de ~ad for it [1,2]. We shall here show
that the basic (i.e., 8-directi. 'n code can be generalized to
codes having a much larger number .. 1lowed directions and that
such codes, in spite of thelr increased complexity, may have definite

advantages for certain applicatlons [3].

In selecting a line-drawing coding scheme for a particular
application, it 1s helpful to evaluate the scheme against the follow-
ing five criteria: (1) compactness, (2) precision, (3) smoothness,
(4) ease of encoding and decoding, and (5) facility for processing.
The relative weight to be assigned to each of these criteria 1is very

much dependent on the intended application. If the purpose of the

encoding is primarily storage or transmission, compactness is likely




to be of paramount importance as it directly determines the required
amount of camputer memory or channel bandwidth (or transmission time).
Precision 1s important if quantitative aspects of the encoded data are
of particular interest (i.e., a geographic map). Smoothness may be
of significance if the encoded data is ever to be displayed, especially
if the "falrness" of a curve is important or if the result 1s to be
aesthetically pleasing.

The welght to be given to ease of encoding (and decoding) will be
high if large data quantities are to be encoded. For applications in-
volving smaller data quantities but extensive processing, simplicity

of the processing task is likely to outweigh simplicity of encoding.

2. GENERALIZED CHAIN CODES
In the basic (8-point) chein code, the next node (r, s) in
sequence for a glven present node (i, J) must be one of the 8 nodes
that are 1- or /2-distant, i.e., such that max. [r-i|, |s~j| = 1.
Thus in Fig. 1, for a given node A, the permissible next nodes in
the basic chain code are the nodes numbered O through 7. All of
these nodes lie on the boundary of a square of side 2 and centered at

A. We shall refer to this square boundary as "ring 1".

Let us now consider a coding scheme in which the "next" node
may be any node in ring 1 or in ring 2. (Ring 2 consists of nodes 8
through 23 in Fig. 1). These are the nodes for which max. |r-if,
|s-j| = 1 or 2. A chain based on such a 2U-point scheme may contaln
links of length 1, v¥2, 2, /5, and 2/2. Also there will be a total of
16 allowed directions (determined by the nodes of ring 2). A curve
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encoded with this scheme is likely to exhibit finer angular quantiza-
tion and to contain fewer segments than one encoded in the 8-point scheme.
Finer angular quantization will permit improved smoothness. Fig. 2

shows a curve encoded in both the 8-point scheme (2a) and the 24-point

scheme (2b); the map of Fig. 2c¢ is shown 8-point encoded in Fig. 2d.

A variety of other chain coding schemes can now be readily
postulated. However, let us first look at some of the properties of
the rings. Examination of Fig. 1 shows that as we advance from ring
n to ring n+l, for each non-corner node of ring n, there is a cor-
responding non-corner node in ring ntl. For each of the 4 corner nodes
of ring n, there is a corresponding corner node in ring n+l as well as
2 non—-corner nodes not present in ring n. Hence the total number of
nodes in ring n+l will be greater by 8 than the number of nodes in
ring n. Since the number of nodes in ring 1 is 8, it follows that
ring n will contain precisely 8n nodes. The number of nodes for all

rings, 1 through n inclusive, is Un(n+l).

In the first octant (slope 0 through 1) the permissible slopes
for the set of rings 1 through n are all those that correspond to the
rational numbers between 0 and 1 inclusive whose denominators are less
than or equal to n, and these, if ordered, are the terms of the Farey
series of order n [4,5]. The slopes for the other octants follow from
symmetry. The total number of different permissible directions for the
set of rings 1 through n is given by 8F(n) - 8, where F(n) 1s the
rumber of terms in the Farey series of order n.




In forming a chain coding scheme, we may use any number of rings,
in any cambination. Thus we may from a chain code based solely on

ring 2. It will have 16 permissible directions and its links will be

of length 2, V5, and 2/2. Its angular quantization will be either 18.4°

or 26.5°. It differs from the 24-point code in that steps of length 1
or /2 are not allowed. As a result there may be difficulty in obtain-
ing a closed chain to correspond to a closed curve; that 1s, the end
points of a 16-point encoded chain may be 1 or Y2 units apart without
the availability of links of such lengths for closing this gap. For
example, if one draws in Fig. 1 a line segment from node A to node 23
and from node 23 to node 1 (both permissible l6~point line segments),
the end points, nodes A and 1, will be a distance v2 apart. Although
this lack of completeness may be objectionable to the purist, in
practice it 1s of minor consequence since a chaln can always be

closed by some sacrifice in precision. Thus for the previous 2-link
chain, drawing the second link from node 23 to node 9 instead of to
node 1 will permit closing the chain with a 1link from 9 to A. The
16-~1ink scheme has been previously proposed for use with digital
plotters [6].

In returning to the 24-1ink code we note that (since the 8-link
code 1s subsumed it) it has all the features of the 8-link code of
being able to follow fine detail (small radii of curvature) with
short segments but in addition has longer segments for "taking bigger

steps" where the curvature is not as severe. These larger steps can

wlle
BT MR T R NSRS P - T o\ — — - y




o

be taken with an angular quantization roughly twice as fine as
that of the 8-link scheme. Clearly, with the foregoing in mind,

a 48-link scheme utilizing rings 1, 2 and 3 should be even better.

The coding matrices corresponding to 4-,8-,16-,24-,32- and UB-
1link codes are shown in Fig. 3. Note that the coding matrix for the 32-
1link consists of rings 1 and 3. This code thus has the ability to
take relatively long, fine-angle steps but, because of ring 1, can
also follow small detail in a curve. The U8-link code of Fig. 3 (g)
consists of the complete rings 1 and 2, and the partial ring 4.
In ring 4, those nodes for which one coordinate has value 3 have
been omitted. If ring 2 were also eliminated, a 32-link code would
result (consisting now of ring 1 and the partial ring 4) that would
have an excellent long~distance capability and yet retain the ability
to follow fine detail. The rules governing the node relations for

the codes in Fig. 3 are shown in Fig. 4.

3. QUANTIZATION

One of the appealing features of the 8-1link code has been its
simplicity - for quantization, for encoding, and for processing. As
we go to higher-order link codes, the complexity of these tasks in-
creases. Let us examine first the quantization problem. In Fig.
5 (a), the so-called grid quantization method for the 8-link code is
illustrated. One traces along the curve, and at each intersection
between curve and superimposed grid, the node closest to the intersection

is selected as next node. The method assures that on average approximately




41 per cent of the links in a chain will be of length v2. An
alternate quantization scheme is the so called square-box scheme

of Mg. 5 (b), where the next node is selected on the basis of a
square box "capture area" surrounding each node. The latter scheme,

however, yields then only 4-point coded chains [2].

In Fig. 5 (c) we show how the grid-intersection scheme has been
extended to the 24-point code. In determining the next node, one first
looks for the intersection between the curve and ring 2. The closest
ring-2 node 1s identified; however, before it can be taken as the
next node, it 1s necessary to determine whether fhe curve intersects
ring 1 within limits set by the grid midpoints to either side of the
identified ring-2 node. In Fig. 5 (c),'for curve A the ring-2 node
is 17. Its limits in ring 1 are located at the 1/4 and 3/U points
between nodes 1 and 2 (note the dashed lines). If the curve inter-
sects ring 1 within these limits, the ring 2 node is the valid next
node. Thus in Fig. 5 (c), node 17 is a valld next node for curve A,
but node 9 1is not a valid next node for curve B. For curve B, the

next node must be taken from ring 1. (It will be node 1).

The quantization scheme for the 32-point code (based on rings 1
and 3) is shown in Fig. 5(d). Appropriate limits must be satisfied for
rings 3, 2, 1 (in that order). In the figure, curve A satisfies all
1imits assoclated with node 9 and node 9 thus becomes the next node.
However, node 16 camnot be selected for curve B because the associated
ring-2 and ring-1 limits are not satisfied. One should note that,
although the 32-point code utilizes only rings 1 and 3, for the purpose




of quantization, all rings of lower order must be considered. The

quantization procedure for higher-order codes is similar.

4. ENCODING

For the 8-point chain code, the coding convention is well known
and is shown in Fig. 6 (b). In Fig. 6 (a) we show the corresponding
convention for the 4-point chain code. Possible conventions for the
16~ and 24-point codes are shown in Fig. 6 (c) and (d), respectively.
For both of the latter codes, addition of 2 to each code value
will cause a 90-degree counter-clockwise rotation (subject to appropriate
1imit checks to assure remaining in the same ring). Some different
coding conventions are illustrated in Fig. 7 (a) and (b), which have
some advantages over those of Fig. 6. Proposed coding assigrments
for the 32-point and the two 48-point codes of Fig. 3 are shown in
Figs. 8 anmd 9.

5. COMPARATIVE CODE CHARACTERISTICS

There are five major criterla for evaluating the effectiveness of
a coding scheme for line-drawing data: precision, compactness, smooth-
ness, simplicity of encoding, and facility for processing. The relative
welghts to be given to each of these criteria depends somewhat on the
application. Where large quantities of line drawing data are involved,
as with geographic maps, compactness of storage is an important con-
sideration. Smoothness 1is important only where visual display is
involved. Facility for processing takes on significance if the encoded

line drawing data 1s to be subject to extensive analysis and manipulation.

A sample contour 1s illustrated in Fig. 10. A square lattice has
been overlaid. The lattice spacing 1s approximately 1/40 of the maxi-




mum distance between two points on the contour. Chain codes were
generated using the 4=, 8-, 16~, 24-, and 32-point schemes. The

results are given in Fig's. 11 and 12. The disadvantages of the 4-
point scheme are at once apparent: 1t leads to a very coarse contour
representation and - for that reason - to a perimeter that is excessively
long. The 8-point code gives a moderately good result; however, the
higher-order codes are able to yleld much smoother perimeters because

of thelr finer angular resolution.

A quantitative comparison of the different codes is given in
Table I. The total number of bits for encoding the contour in each
code 1s determined on the basis that a full code word be assigned to
each link type of the code (i.e., no code compression using differencing
or other techniques is considered). The 16~ and 32-point codes are
shown to yield considerably more compact representations. (Subsequent
code compression would tend to favor the 32-point code over the 16-point
code). Precision, as measured here in terms of perimeter length and
enclosed area gives the best rating to the 32-point code, though the
performance of the other codes (except the 4-point code) is not far
behind. Very important here, however, 1s the total number of links
since this directly determines the processing time for virtually any
analysis or manipulation algorittm. This strongly favors the 32-
point code (38 to 87 as against the 8-point code).

The example shows the potential advantages of the higher-order chain
codes in achieving smoother and more compact representations as well as
reduced processing time. The advantages appear strong enough to outweigh
the increased encoding complexity cost in most applications.
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; Code Number Bits per Number Length Area
L System of Links Link of Bits

y 124 2 248 124.0 312.0

8 87 3 261 103.2 310.5

16 Ly 4 176 97.4 306.5

24 48 5 240 98.1 301.8

32 38 5 190 97.4 307.0

Original curve 96.5 310.3

Table 1. Results of encoding contour of Fig. 10
in different chain codes.
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given node A: 0 -~ 7 (ring 1), 8 -~ 23 (ring 2),
24 - 47 (ring 3), etc. Ring 1 is shown bold.
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Fig. 2. Two different chain encodings of the
same curve: (a) 8-point code, (b) 24-point code.
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Fig. 5. Quantization schemes for the 4-, 8-, 24-, and
32-point chain codes. (a) 8-point grid-intersect
quantization, (b) 4-point square~box quantization,
(¢) 24-point grid-intersect quantization, and (d)
32-point grid-intersect quu{t’iizttion.
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